学子专区—ADALM2000实验:将BJT连接为二极管

winniewei 提交于 周三, 03/25/2020
学子专区—ADALM2000实验:将BJT连接为二极管

作者ADI公司  Doug Mercer顾问研究员Antoniu Miclaus系统应用工程师

简单的NPN二极管连接

目标

本次实验的目的是研究将双极性结型晶体管(BJT)连接为二极管时的正向/反向电流与电压特性。

材料:

       ADALM2000主动学习模块

       无焊面包板

       一个1 kΩ电阻(或其他类似值)

       一个小信号NPN晶体管(2N3904)

说明:

NPN晶体管的发射极-基极结的电流与电压特性可以使用ADALM2000实验室硬件和以下连接来测量。使用面包板,将波形发生器W1连接到电阻R1的一端。将示波器输入2+也连接到这里。将Q1的基极和集电极连接到R1的另一端,如图所示。Q1的发射极接地。将示波器输入2-和示波器输入1+连接到Q1的基极-集电极节点。示波器输入1-也可以选择接地。

图1.NPN二极管连接图。

1.NPN二极管连接图。

硬件设置:

波形发生器配置为100 Hz三角波,峰峰值幅度为6 V,偏移为0 V。示波器的差分通道22+2-)用于测量电阻(和晶体管)中的电流。连接示波器通道1 (1+)用于测量晶体管两端的电压。流过晶体管的电流是1+1-之间的电压差除以电阻值(1 kΩ)的结果。

图2.NPN二极管面包板电路。

2.NPN二极管面包板电路。

步骤:

将捕获的数据加载到电子表格中,计算电流。绘制电流与晶体管两端电压(VBE)的曲线。没有反向流动电流。在正向导通区域,电压-电流呈对数关系。如果在对数坐标系中绘制电流曲线,结果应为直线。

图3.NPN二极管XY曲线。

3.NPN二极管XY曲线。

图4.NPN二极管波形。

4.NPN二极管波形。

反向击穿特性

目标:

本次实验的目标是研究BJT连接为二极管时发射极-基极结的反向击穿电压特性。

材料:

       一个100 Ω电阻

       一个小信号PNP晶体管(2N3906)

说明:

使用面包板,将波形发生器输出连接到100 Ω串联电阻R1的一端以及Q1的基极和集电极,如图2所示。发射极连接到-5 V固定电源。将示波器通道1 (1+) 连接到基极-集电极节点,1-连接到发射极节点。示波器通道2用于测量R1两端的电压,从而测得通过Q1的电流。
之所以选择PNP 2N3906而不是NPN 2N3904,是因为PNP发射极-基极击穿电压小于ADALM2000可产生的+10 V最大值,而NPN的击穿电压可能会高于10V

图5.PNP发射极-基极反向击穿配置。

5.PNP发射极-基极反向击穿配置。

硬件设置:

波形发生器配置为100 Hz三角波,峰峰值幅度为10 V,偏移为0 V。示波器通道1 (1+)用于测量电阻两端的电压。其设置应配置为将通道2跨接到电阻R1的两端(2+2-)。两个通道均应设置为每格1 V。流过晶体管的电流是2+2-之间的电压差除以电阻值(100 Ω)的结果。

图6.PNP发射极面包板电路。

6.PNP发射极面包板电路。

步骤:

实验室硬件电源将可用的最大电压限制为小于10V。许多晶体管的发射极-基极反向击穿电压都大于此电压。在图6所示的配置中,可以测量0 V10 VW1峰峰值摆幅)之间的电压。

图7.PNP发射极波形。

7.PNP发射极波形。

捕获示波器波形并将其导出到电子表格中。对于本示例中使用的PNP晶体管2N3906,发射极-基极结击穿电压约为8.5V

降低二极管的有效正向电压

目标:

本次实验的目标是研究一种正向电压特性小于BJT连接作为二极管时的电路配置。

材料:

       一个1 kΩ电阻

       一个150 kΩ电阻(或100 kΩ47 kΩ电阻串联)

       一个小信号NPN晶体管(2N3904)

       一个小信号PNP晶体管(2N3906)

说明:

连接面包板,将波形发生器W1连接到串联电阻R1的一端以及NPN Q1的集电极和PNP Q2的基极,如图8所示。Q1的发射极接地。Q2的集电极连接到Vn (5 V)。电阻R2的一端连接到Vp (5 V)R2的另一端连接到Q1的基极和Q2的发射极。示波器通道2 (2+)的单端输入连接到Q1的集电极。

图8.降低二极管的有效正向压降所需的配置图。

8.降低二极管的有效正向压降所需的配置图。

硬件设置:

波形发生器配置为100 Hz三角波,峰峰值幅度为8 V,偏移为2 V。示波器通道2 (2+)用于测量电阻两端的电压。流过晶体管的电流是示波器输入1+1-之间的电压差除以电阻值(1kΩ)的结果。

步骤:

现在,二极管的导通电压约为100 mV,而第一个示例中的简单二极管连接方案为650 mV。绘制W1扫频时Q1VBE曲线。

图9.降低二极管有效正向压降的面包板电路。

9.降低二极管有效正向压降的面包板电路。

图10.降低二极管有效正向压降的波形。

10.降低二极管有效正向压降的波形。

VBE乘法器电路

目标:

我们已探讨了一种能有效降低VBE的方法,本次实验的目的则是增大VBE,并展示与单个BJT连接为二极管的方案相比更大的正向电压特性。

材料:

       两个2.2 kΩ电阻

       一个1 kΩ电阻

       一个5 kΩ可变电阻、电位计

       一个小信号NPN晶体管(2N3904)

说明:

连接面包板将波形发生器W1连接到电阻R1的一端如图11所示。Q1的发射极接地。电阻R2R3R4构成分压器,电位计R3的滑动端连接到Q1的基极。Q1的集电极连接到R1的另一端和R2处的分压器顶端。示波器通道2 (2+)连接到Q1的集电极。

图11.VBE乘法器配置。

11.VBE乘法器配置。

硬件设置:

波形发生器配置为100 Hz三角波,峰峰值幅度为4 V,偏移为2 V。示波器通道单端输入2+用于测量晶体管两端的电压。其设置应配置为通道1+连接发生器W1以显示输出,通道2+连接Q1的集电极。流过晶体管的电流是示波器输入1+和示波器输入2+测得的W1两端的电压差除以电阻值(1 kΩ)的结果。

步骤:

开始时,将电位计R3设置为其范围的中间值,Q2集电极处的电压应大约为VBE2倍。将R3设置为最小值时,集电极处的电压应为VBE9/2(或4.5)倍。将R3设置为最大值时,集电极处的电压应为VBE9/7倍。

图12.VBE乘法器面包板电路。

12.VBE乘法器面包板电路。

图13.VBE乘法器面包板波形。

13.VBE乘法器面包板波形。

问题:

       VBE乘法器与简单的二极管连接的晶体管相比,其电压与电流之间的特性如何?

您可以在学子专区博客上找到问题答案。

作者简介

Doug Mercer1977年毕业于伦斯勒理工学院(RPI)获电子工程学士学位。自1977年加入ADI公司以来他直接或间接贡献了30多款数据转换器产品并拥有13项专利。他于1995年被任命为ADI研究员。2009年,他从全职工作转型,并继续以名誉研究员身份担任ADI顾问,为主动学习计划撰稿。2016年,他被任命为RPI ECSE系的驻校工程师。联系方式doug.mercer@analog.com

Antoniu Miclaus现为ADI公司的系统应用工程师从事ADI教学项目工作同时为Circuits from the Lab®QA自动化和流程管理开发嵌入式软件。他于20172月在罗马尼亚克卢日-纳波卡加盟ADI公司。他目前是贝碧思鲍耶大学软件工程硕士项目的理学硕士生,拥有克卢日-纳波卡科技大学电子与电信工程学士学位。联系方式:antoniu.miclaus@analog.com

江苏快三开奖结果,江苏快三相关的文章

Digi-Key